

Table of Contents

	Overview
	What?

	Why?

	Goals

	Architecture

	Status

	Introduction
	Concept of operations

	Installation
	Docker

	Manual

	Usage
	Web Interface

	Sending logs to MozDef

	JSON format

	Simple test

	Alert Development Guide

	MozDef for AWS
	Feedback

	Dependencies

	Supported Regions

	Architecture

	Deployment Process

	Troubleshooting

	Using MozDef

	Development
	Code

	Mozdef_util Library

	Continuous Integration and Continuous Deployment

	References
	Screenshots

	GeoModel Version 0.1 Specification

	AWS re:invent 2018 SEC403 Presentation

	Contributors

License

Mozilla Public License Version 2.0

Contact

	mozdef INSERTAT mozilla.com

	#mozdef

Overview

What?

It’s easiest to describe The Mozilla Defense Platform (MozDef) as a set of micro-services you can use as an open source Security Information and Event Management (SIEM) overlay on top of Elasticsearch.

Why?

The inspiration for MozDef comes from the large arsenal of tools available to attackers.
Open source suites like metasploit, armitage, lair, dradis and others are readily available to help attackers coordinate, share intelligence and finely tune their attacks in real time.

Open source options for defenders are usually limited to wikis, ticketing systems and manual tracking databases attached to the end of a commercial SIEM.

The Mozilla Defense Platform (MozDef) seeks to automate the security incident handling process and facilitate the real-time activities of incident handlers.

Goals

High level

	Provide a platform for use by defenders to rapidly discover and respond to security incidents

	Automate interfaces to other systems like firewalls, cloud protections and anything that has an API

	Provide metrics for security events and incidents

	Facilitate real-time collaboration amongst incident handlers

	Facilitate repeatable, predictable processes for incident handling

	Go beyond traditional SIEM systems in automating incident handling, information sharing, workflow, metrics and response automation

Technical

	Offer micro services that make up an Open Source Security Information and Event Management (SIEM)

	Scalable, should be able to handle thousands of events per second, provide fast searching, alerting, correlation and handle interactions between teams of incident handlers

MozDef aims to provide traditional SIEM functionality including:

	Accepting events/logs from a variety of systems.

	Storing events/logs.

	Facilitating searches.

	Facilitating alerting.

	Facilitating log management (archiving,restoration).

It is non-traditional in that it:

	Accepts only JSON input.

	Provides you open access to your data.

	Integrates with a variety of log shippers including logstash, beaver, nxlog, syslog-ng and any shipper that can send JSON to either rabbit-mq or an HTTP(s) endpoint.

	Provides easy integration to Cloud-based data sources such as CloudTrail or GuardDuty.

	Provides easy python plugins to manipulate your data in transit.

	Provides extensive plug-in opportunities to customize your event enrichment stream, your alert workflow, etc.

	Provides realtime access to teams of incident responders to allow each other to see their work simultaneously.

Architecture

MozDef is based on open source technologies including:

	Nginx (http(s)-based log input)

	RabbitMQ (message queue and amqp(s)-based log input)

	uWSGI (supervisory control of python-based workers)

	bottle.py (simple python interface for web request handling)

	Elasticsearch (scalable indexing and searching of JSON documents)

	Meteor (responsive framework for Node.js enabling real-time data sharing)

	MongoDB (scalable data store, tightly integrated to Meteor)

	VERIS from verizon (open source taxonomy of security incident categorizations)

	d3 (javascript library for data driven documents)

	dc.js (javascript wrapper for d3 providing common charts, graphs)

	three.js (javascript library for 3d visualizations)

	Firefox (a snappy little web browser)

Frontend processing

Frontend processing for MozDef consists of receiving an event/log (in json) over HTTP(S), AMQP(S), or SQS
doing data transformation including normalization, adding metadata, etc. and pushing
the data to Elasticsearch.

Internally MozDef uses RabbitMQ to queue events that are still to be processed.
The diagram below shows the interactions between the python scripts (controlled by uWSGI),
the RabbitMQ exchanges and Elasticsearch indices.

[image: _images/frontend_processing.png]

Status

MozDef has been in production at Mozilla since 2014 where we are using it to process over 300 million events per day.

Introduction

Concept of operations

Event Management

From an event management point of view MozDef relies on Elastic Search for:

	event storage

	event archiving

	event indexing

	event searching

This means if you use MozDef for your log management you can use the features of Elastic Search to store millions of events, archive them to Amazon if needed,
index the fields of your events, and search them using highly capable interfaces like Kibana.

MozDef differs from other log management solutions that use Elastic Search in that it does not allow your log shippers direct contact with Elastic Search itself.
In order to provide advanced functionality like event correlation, aggregation and machine learning, MozDef inserts itself as a shim between your log shippers (rsyslog, syslog-ng, beaver, nxlog, heka, logstash)
and Elastic Search. This means your log shippers interact with MozDef directly and MozDef handles translating their events as they make they’re way to Elastic Search.

Event Pipeline

The logical flow of events is:

 +–––––––––––+ +––––––––––––––+
 | MozDef +––––––––––––––+ |
+––––––––––+ | FrontEnd | Elastic |
| shipper +–––––––+–––––––––––+ | Search |
++++++++++++ | cluster |
++++++++++++ | |
| shipper +–––––––+–––––––––––+ | |
+––––––––––+ | MozDef +-–––––––––––––+ |
 | FrontEnd | |
 +–––––––––––+ | |
 +––––––––––––––+

Choose a shipper (logstash, nxlog, beaver, heka, rsyslog, etc) that can send JSON over http(s). MozDef uses nginx to provide http(s) endpoints that accept JSON posted
over http. Each front end contains a Rabbit-MQ message queue server that accepts the event and sends it for further processing.

You can have as many front ends, shippers and cluster members as you with in any geographic organization that makes sense for your topology. Each front end runs a series
of python workers hosted by uwsgi that perform:

	event normalization (i.e. translating between shippers to a common taxonomy of event data types and fields)

	event enrichment

	simple regex-based alerting

	machine learning on the real-time event stream

Event Enrichment

To facilitate event correlation, MozDef allows you to write plugins to populate your event data with consistent meta-data customized for your environment. Through simple
python plug-ins this allows you to accomplish a variety of event-related tasks like:

	further parse your events into more details

	geoIP tag your events

	correct fields not properly handled by log shippers

	tag all events involving key staff

	tag all events involving previous attackers or hits on a watchlist

	tap into your event stream for ancilary systems

	maintain ‘last-seen’ lists for assets, employees, attackers

Event Correlation/Alerting

Correlation/Alerting is currently handled as a series of queries run periodically against the Elastic Search engine. This allows MozDef to make full use of the lucene
query engine to group events together into summary alerts and to correlate across any data source accessible to python.

Incident Handling

From an incident handling point of view MozDef offers the realtime responsiveness of Meteor in a web interface. This allows teams of incident responders the ability
to see each others actions in realtime, no matter their physical location.

Installation

MozDef can be run in either Docker containers, or manually on a CentOS 7 machine.

	Docker

	Manual

Usage

	Web Interface
	Events visualizations

	Sending logs to MozDef
	What should I log?

	JSON format
	Background

	Description

	Mandatory Fields

	Details substructure (mandatory if such data is sent, otherwise optional)

	Examples

	Simple test

	Alert Development Guide
	How to start developing your new alert

	How to run tests on your alert

	Background on concepts

	Example first alert

	Scheduling your alert

	How to run the alert in the docker containers

	How to get the alert in a release of MozDef?

	Customizing the alert summary

	Questions?

	Resources

Alert Development Guide

This guide is for someone seeking to write a MozDef alert

How to start developing your new alert

Run:

make new-alert

This will prompt for information and create two things:

	<The new alert file>

	<The new alert test file>

You can now edit these files in place, but it is recommended that you run unit-tests on the new alert to make sure it passes before editing (instructions below).

How to run tests on your alert

Requirements:

	Make sure you have the latest version of docker installed.

	Known Issues: docker’s overlayfs has a known issue with tar files, so you will need to go to Docker => Preferences => Daemon => Advanced and add the following key pair (“storage-driver” : “aufs”). You may also need to allow more than 2GB for docker depending on which containers you run.

make build-tests
make run-tests TEST_CASE=tests/alerts/[YOUR ALERT TEST FILE].py

This test should pass and you will have confirmed you have a working environment.

At this point, begin development and periodically run your unit-tests locally with the following commands:

make build-tests
make run-tests TEST_CASE=tests/alerts/[YOUR ALERT TEST FILE].py

Background on concepts

	Logs - These are individual log entries that are typically emitted from systems, like an Apache log.

	Events - The entry point into MozDef, a log parsed into JSON by some log shipper (syslog-ng, nxlog) or a native JSON data source like GuardDuty, CloudTrail, most SaaS systems, etc.

	Alerts - These are either a 1:1 events to alerts (this thing happens and alert) or a M:1 events to alerts (N of these things happen and alert).

Alerts in MozDef are mini python programs. Most of the work is done by the alert library so the portions you will need to code fall into two functions:

	main - This is where the alert defines the criteria for the types of events that will trigger the alert.

	onAggregation/onEvent - This is where the alert defines what happens when it sees those events, such as post processing of events and making them into a useful summary to emit as an alert.

In both cases the alert is simple python, and you have all the facility of python at your disposal including any of the python libraries you might want to add to the project.

It’s important to note that when you iterate on the alert to regularly test to ensure that the alert is still firing. Should you run into a situation where it’s not firing, the best way to approach this is to backout the most recent change and review the alert and tests to ensure that the expectations are still in sync.

Example first alert

Let’s step through creating a simple alert you might want to verify a working deployment.
For this sub-section it is assumed that you have a working MozDef instance which resides in some MozDefDir and is receiving logs.

First move to to your MozDefDir and issue

make new-alert

You will be asked for a string to name a new alert and the associated test. For this example we will use the string “foo”

make new-alert
Enter your alert name (Example: proxy drop executable): foo
Creating alerts/foo.py
Creating tests/alerts/test_foo.py

These will be created as above in the alerts and tests/alerts directories.
There’s a lot to the generated code, but a class called “AlertFoo” is of immediate interest and will define when and how to alert.
Here’s the head of the auto generated class.

class AlertFoo(AlertTask):
 def main(self):
 # Create a query to look back the last 20 minutes
 search_query = SearchQuery(minutes=20)

 # Add search terms to our query
 search_query.add_must([
 TermMatch('category', 'helloworld'),
 ExistsMatch('details.sourceipaddress'),
])
 ...

This code tells MozDef to query the collection of events for messages timestamped within 20 minutes from time of query execution which are of category “helloworld” and also have a source IP address.
If you’re pumping events into MozDef odds are you don’t have any which will be tagged as “helloworld”. You can of course create those events, but lets assume that you have events tagged as “syslog” for the moment.
Change the TermMatch line to

TermMatch('category', 'syslog'),

and you will create alerts for events marked with the category of ‘syslog’.
Ideally you should edit your test to match, but it’s not strictly necessary.

Scheduling your alert

Next we will need to enable the alert. Alerts in MozDef are scheduled via the celery task scheduler. The schedule
passed to celery is in the config.py file:

Open the file

docker/compose/mozdef_alerts/files/config.py

or simply

alerts/files/config.py

if you are not working from the docker images
and add your new foo alert to the others with a crontab style schedule

ALERTS = {
 'foo.AlertFoo': {'schedule': crontab(minute='*/1')},
 'bruteforce_ssh.AlertBruteforceSsh': {'schedule': crontab(minute='*/1')},
 'unauth_ssh.AlertUnauthSSH': {'schedule': crontab(minute='*/1')},
}

The format is ‘pythonfilename.classname’: {‘schedule’: crontab(timeunit=’*/x’)} and you can use any celery time unit (minute, hour) along with any schedule that makes sense for your environment.
Alerts don’t take many resources to execute, typically finishing in sub second times, so it’s easiest to start by running them every minute.

How to run the alert in the docker containers

Once you’ve got your alert passing tests, you’d probably like to send in events in a docker environment to further refine, test, etc.

There are two ways to go about integration testing this with docker:
1) Use ‘make run’ to rebuild the containers each time you iterate on an alert
2) Use docker-compose with overlays to instantiate a docker environment with a live container you can use to iterate your alert

In general, the ‘make run’ approach is simpler, but can take 5-10mins each iteration to rebuild the containers (even if cached).

To use the ‘make run’ approach, you edit your alert. Add it to the docker/compose/mozdef_alerts/files/config.py file for scheduling as discussed above and simply:

make run

This will rebuild any container that needs it, use cache for any that haven’t changed and restart mozdef with your alert.

To use a live, iterative environment via docker-compose:

docker-compose -f docker/compose/docker-compose.yml -f docker/compose/dev-alerts.yml -p mozdef up

This will start up all the containers for a mozdef environment and in addition will allow you an adhoc alerts container to work in that loads the /alerts directory as a volume in the container.
To run the alert you are developing you will need to edit the alerts/lib/config.py file as detailed above to schedule your alert. You will also need to edit it to reference the container environment as follows

RABBITMQ = {
 'mqserver': 'rabbitmq',
...
ES = {
 'servers': ['http://elasticsearch:9200']
}

Once you’ve reference the containers, you can shell into the alerts container:

docker exec -it mozdef_alerts_1 bash

Next, start celery

celery -A lib.tasks worker --loglevel=info --beat

If you need to send in adhoc events you can usually do it via curl as follows:

curl -v --header "Content-Type: application/json" --request POST --data '{"tags": ["test"],"category": "helloworld","details":{"sourceipaddress":"1.2.3.4"}}' http://loginput:8080/events

How to get the alert in a release of MozDef?

If you’d like your alert included in the release version of Mozdef, the best way is to propose a pull request and ask for a review from a MozDef developer. They will be able to help you get the most out of the alert and help point out pitfalls. Once the alert is accepted into MozDef master, there is a process by which MozDef installations can make use or ‘enable’ that alert. It’s best to work with that MozDef instance’s maintainer to enable any new alerts.

Customizing the alert summary

On the alerts page of the MozDef web UI each alert is given a quick summary and for many alerts it is useful to have contextual information displayed here. Looking at the example foo alert we see

def onAggregation(self, aggreg):
 # aggreg['count']: number of items in the aggregation, ex: number of failed login attempts
 # aggreg['value']: value of the aggregation field, ex: toto@example.com
 # aggreg['events']: list of events in the aggregation
 category = 'My first alert!'
 tags = ['Foo']
 severity = 'NOTICE'
 summary = "Foo alert"

 # Create the alert object based on these properties
 return self.createAlertDict(summary, category, tags, aggreg['events'], severity)

This is where the alert object gets created and returned. In the above code the summary will simply be “Foo Alert”, but say we want to know how many log entries were collected in the alert? The aggreg object is here to help.

summary = "Foo alert " + aggreg['count']

Gives us an alert with a count. Similarly

summary = "Foo alert " + aggreg['value']

Will append the aggregation field to the summary text. The final list aggreg[‘events’] contains the full log entries of all logs collected and is in general the most useful. Suppose we want one string if the tag ‘foo’ exists on these logs and another otherwise

if 'foo' in aggreg['events'][0]['_source']['tags']:
 summary = "Foo alert"
else:
 summary = "Bar alert"

All source log data is held within the [‘_source’] and [0] represents the first log found. Beware that no specific ordering of the logs is guaranteed and so [0] may be first, last, or otherwise chronologically.

Questions?

Feel free to file a github issue in this repository if you find yourself with a question not answered here. Likely the answer will help someone else and will help us improve the docs.

Resources

Python for Beginners <https://www.python.org/about/gettingstarted/>

MozDef for AWS

What is MozDef for AWS

Cloud based MozDef is an opinionated deployment of the MozDef services created in 2018 to help AWS users
ingest CloudTrail, GuardDuty, and provide security services.

[image: _images/cloudformation-launch-stack.png]
 [https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?stackName=mozdef-for-aws&templateURL=https://s3-us-west-2.amazonaws.com/public.us-west-2.infosec.mozilla.org/mozdef/cf/v3.1.0/mozdef-parent.yml]
Feedback

MozDef for AWS is new and we’d love your feedback. Try filing GitHub issues here in the repository or connect with us
in the Mozilla Discourse Security Category.

https://discourse.mozilla.org/c/security

You can also take a short survey on MozDef for AWS after you have deployed it.
https://goo.gl/forms/JYjTYDK45d3JdnGd2

Dependencies

MozDef requires the following:

	A DNS name (e.g. cloudymozdef.security.allizom.org) which you will need to point
at the IP address of the Application Load Balancer

	An OIDC Provider with ClientID, ClientSecret, and Discovery URL

	Mozilla uses Auth0 but you can use any OIDC provider you like: Shibboleth,
KeyCloak, AWS Cognito, Okta, Ping (etc.).

	You will need to configure the redirect URI of /redirect_uri as allowed in
your OIDC provider configuration.

	An ACM Certificate in the deployment region for your DNS name

	A VPC with three public subnets available

	It is advised that this VPC be dedicated to MozDef or used solely for security automation.

	The three public subnets must all be in different availability zones [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#using-regions-availability-zones-describe]
and have a large enough number of IP addresses to accommodate the infrastructure.

	The VPC must have an internet gateway [https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html]
enabled on it so that MozDef can reach the internet.

	An SQS queue receiving GuardDuty events
- At the time of writing this is not required but may be required in future.

Supported Regions

MozDef for AWS is currently only supported in us-west-2 but additional regions will be added over time.

Architecture

[image: _images/MozDefCloudArchitecture.png]

Deployment Process

	Launch the one click stack and provide the requisite values.

	Wait for the stack to complete. You’ll see several nested stacks in the
CloudFormation console. Once the EC2 instance is running there are still
provisioning steps taking place on the instance. Note: This may take a while

	Configure your DNS name to point to the application load balancer

	Navigate to the URL you set up for MozDef. It should redirect you to the
single sign on provider. If successful you’ll see the MozDef UI.

	Try navigating to ElasticSearch https://your_base_url:9090

You should see the following:

{
 "name" : "SMf4400",
 "cluster_name" : "656532927350:mozdef-mozdef-yemjpbnpw8xb",
 "cluster_uuid" : "_yBEIsFkQH-nEZfrFgj7mg",
 "version" : {
 "number" : "5.6.8",
 "build_hash" : "688ecce",
 "build_date" : "2018-09-11T14:44:40.463Z",
 "build_snapshot" : false,
 "lucene_version" : "6.6.1"
 },
 "tagline" : "You Know, for Search"
}

	Test out Kibana at https://your_base_url:9090/_plugin/kibana/app/kibana#/discover?_g=()

Troubleshooting

To view logs on the ec2 instance

	Determine the name/IP of the autoscaled EC2 instance via the command line or web console

	SSH into that EC2 instance as the ec2-user user using the SSH keypair that you
set as the KeyName parameter in CloudFormation

	List out all the containers with

sudo docker container ls

	Tail logs from the container you’d like to examine with

show both the access logs and the error logs
sudo docker logs --follow NAME_OF_CONTAINER
show only the error logs
docker logs --follow NAME_OF_CONTAINER >/dev/null

where NAME_OF_CONTAINER is the container name or ID that you found in the
step above

	To enter the environment for that container run

sudo docker exec --interactive --tty NAME_OF_CONTAINER /bin/bash

	To view the environment variables being made available to the containers view
the file /opt/mozdef/docker/compose/cloudy_mozdef.env

Using MozDef

Refer back to our other docs on how to use MozDef for general guidance. Cloud specific instructions will evolve here.
If you saw something about MozDef for AWS at re: Invent 2018 and you want to contribute we’d love your PRs.

Development

	Code
	Plugins

	Actions

	Tests

	Mozdef_util Library
	Installation

	Usage

	Continuous Integration and Continuous Deployment
	Overview

	Travis CI

	AWS CodeBuild

Code

Plugins

Plugins are supported in several places: Event Processing and the REST api.

Event Processing

The front-end event processing portion of MozDef supports python mq plugins [https://github.com/mozilla/MozDef/tree/master/mq/plugins] to allow customization of the input chain.
Plugins are simple python modules than can register for events with a priority, so they only see events with certain
dictionary items/values and will get them in a predefined order.

To create a plugin, make a python class that presents a registration dictionary and a priority as follows:

class message(object):
 def __init__(self):
 '''register our criteria for being passed a message
 as a list of lower case strings or values to match with an event's dictionary of keys or values
 set the priority if you have a preference for order of plugins to run.
 0 goes first, 100 is assumed/default if not sent
 '''
 self.registration = ['sourceipaddress', 'destinationipaddress']
 self.priority = 20

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, message, metadata):
 #do something interesting with the message or metadata
 return (message, metadata)

The plugin will receive a copy of the incoming event as a python dictionary in the ‘message’ variable. The plugin can do whatever it wants with this dictionary and return it to MozDef. Plugins will be called in priority order 0 to 100 if the incoming event matches their registration criteria. i.e. If you register for sourceipaddress you will only get events containing the sourceipaddress field.

If you return the message as None (i.e. message=None) the message will be dropped and not be processed any further.
If you modify the metadata the new values will be used when the message is posted to elastic search. You can use this
to assign custom document types, set static document _id values, etc.

Plugin Registration

Simply place the .py file in the plugins directory where the esworker.py is located, restart the esworker.py process
and it will recognize the plugin and pass it events as it sees them.

REST Plugins

The REST API for MozDef also supports rest plugins [https://github.com/mozilla/MozDef/tree/master/rest/plugins] which allow you to customize your handling of API calls to suit your environment.
Plugins are simple python modules than can register for REST endpoints with a priority, so they only see calls for that endpoint
and will get them in a predefined order.

To create a REST API plugin simply create a python class that presents a registration dictionary and priority as follows:

class message(object):
 def __init__(self):
 '''register our criteria for being passed a message
 as a list of lower case strings to match with an rest endpoint
 (i.e. blockip matches /blockip)
 set the priority if you have a preference for order of plugins
 0 goes first, 100 is assumed/default if not sent

 Plugins will register in Meteor with attributes:
 name: (as below)
 description: (as below)
 priority: (as below)
 file: "plugins.filename" where filename.py is the plugin code.

 Plugin gets sent main rest options as:
 self.restoptions
 self.restoptions['configfile'] will be the .conf file
 used by the restapi's index.py file.

 '''

 self.registration = ['blockip']
 self.priority = 10
 self.name = "Banhammer"
 self.description = "BGP Blackhole"

The registration is the REST endpoint for which your plugin will receive a copy of the request/response objects to use or modify.
The priority allows you to order your plugins if needed so that they operate on data in a defined pattern.
The name and description are passed to the Meteor UI for use in dialog boxes, etc so the user can make choices when needed
to include/exclude plugins. For example the /blockip endpoint allows you to register multiple methods of blocking an IP
to match your environment: firewalls, BGP tables, DNS blackholes can all be independently implemented and chosen by the user
at run time.

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, request, response):
 '''
 request: https://bottlepy.org/docs/dev/api.html#the-request-object
 response: https://bottlepy.org/docs/dev/api.html#the-response-object

 '''
 response.headers['X-PLUGIN'] = self.description

It’s a good idea to add your plugin to the response headers if it acts on a message to facilitate troubleshooting.
Other than that, you are free to perform whatever processing you need within the plugin being sure to
return the request, response object once done:

return (request, response)

Plugin Registration

Simply place the .py file in the rest/plugins directory, restart the REST API process
and it will recognize the plugin and pass it events as it sees them.

Alert Plugins

The alert pipeline also supports alert plugins [https://github.com/mozilla/MozDef/tree/master/alerts/plugins] which allow you to modify an alert’s properties while the alert is “firing” (before it is saved into Elasticsearch/sent to alert actions).

Create a sample plugin in alerts/plugins:

class message(object):
 def __init__(self):
 '''
 adds a new field 'testing'
 to the alert if sourceipaddress is 127.0.0.1
 '''

 self.registration = "sourceipaddress"
 self.priority = 1

This plugin’s onMessage function will get executed every time an alert has “sourceipaddress” as either a key or a value.

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, message):
 if 'sourceipaddress' in message && message['sourceipaddress'] == '127.0.0.1':
 message['testing'] = True
 return message

It’s worth noting that this is a blocking mechanism, so if this function is reaching out to external resources, the alert will not “fire” until it’s execution has finished. It may be preferred to use an alert action instead in cases where you don’t need to modify the alert, but want to trigger an API somewhere.

Plugin Registration

Simply place the .py file in the alerts/plugins directory, restart the alerts process
and it will recognize the plugin and pass it alerts based on registration.

Actions

Actions are currently supported at the end of the alert pipeline.

Alert Action Processing

Alert actions run at the very end of the alert pipeline after the alert is already created, and are non blocking (meaning they also don’t have the ability to modify alerts inline).

class message(object):
 def __init__(self):
 '''
 triggers when a geomodel alert is generated
 '''
 self.alert_classname = 'AlertGeomodel'
 self.registration = 'geomodel'
 self.priority = 1

Alert Trigger

def onMessage(self, message):
 print(message)
 return message

Plugin Registration

Simply place the .py file in the alert actions [https://github.com/mozilla/MozDef/tree/master/alerts/actions] directory.

Tests

Our test suite builds and runs entirely in docker, so a Docker daemon is required to be running locally. The test suite requires a local Elasticsearch and RabbitMQ service to run, but will be started automatically as containers as part of the tests make targets.

Run tests

To run our entire test suite, simply run:

make tests

If you want to only run a specific test file/directory, you can specify the TEST_CASE parameter:

make tests TEST_CASE=tests/mq/plugins/test_github_webhooks.py

Note

If you end up with a clobbered ES index, or anything like that which might end up in failing tests, you can clean the environment with make clean. Then run the tests again.

Mozdef_util Library

We provide a library used to interact with MozDef components.

Installation

If you’re using Mac OS X:

git clone https://github.com/mozilla/mozdef mozdef
cd ./mozdef
export PYCURL_SSL_LIBRARY=openssl
export LDFLAGS=-L/usr/local/opt/openssl/lib;export CPPFLAGS=-I/usr/local/opt/openssl/include
pip install -r requirements.txt

If you’re using CentOS:

git clone https://github.com/mozilla/mozdef mozdef
cd ./mozdef
PYCURL_SSL_LIBRARY=nss pip install -r requirements.txt

Usage

	Connecting to Elasticsearch

	Creating/Updating Documents
	Create a new Event

	Update an existing event

	Create a new alert

	Update an existing alert

	Create a new generic document

	Update an existing document

	Bulk Importing

	Searching for documents
	Simple search

	Aggregate search

	Match/Query Classes
	ExistsMatch

	TermMatch

	TermsMatch

	WildcardMatch

	PhraseMatch

	BooleanMatch

	MissingMatch

	RangeMatch

	QueryStringMatch

	SubnetMatch

	Aggregation

Continuous Integration and Continuous Deployment

Overview

Each git commit to the master branch in GitHub triggers both the TravisCI
automated tests as well as the AWS CodeBuild building. Each git tag applied to a
git commit triggers a CodeBuild build.

Travis CI

Travis CI runs tests on the MozDef code base with each commit to master. The
results can be seen on the
Travis CI MozDef dashboard [https://travis-ci.org/mozilla/MozDef/]

The Test Sequence

	Travis CI creates webhooks when first setup which allow commits to the MozDef
GitHub repo to trigger Travis.

	When a commit is made to MozDef, Travis CI follows the instructions in the
.travis.yml [https://github.com/mozilla/MozDef/blob/master/.travis.yml]
file.

	.travis.yml installs docker-compose in the before_install phase.

	In the install phase, Travis runs the
build-tests [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L88-L89]
make target which calls docker-compose build on the
docker/compose/docker-compose-tests.yml [https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-tests.yml] file which builds a few docker
containers to use for testing.

	In the script phase, Travis runs the
tests [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L52]
make target which

	calls the build-tests make target which again runs docker-compose build
on the docker/compose/docker-compose-tests.yml [https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-tests.yml] file.

	calls the
run-tests [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L67-L69]
make target which.

	calls the
run-tests-resources [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L60-L61]
make target which starts the docker
containers listed in docker/compose/docker-compose-tests.yml [https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-tests.yml].

	runs flake8 with the
.flake8 [https://github.com/mozilla/MozDef/blob/master/.flake8]
config file to check code style.

	runs py.test tests which runs all the test cases.

AWS CodeBuild

Enabling GitHub AWS CodeBuild Integration

Onetime Manual Step

The steps to establish a GitHub CodeBuild integration unfortunately
require a onetime manual step be done before using CloudFormation to
configure the integration. This onetime manual step need only happen a
single time for a given AWS Account + Region. It need not be
performed with each new CodeBuild project or each new GitHub repo

	Manually enable the GitHub integration in AWS CodeBuild using the
dedicated, AWS account specific, GitHub service user.

	A service user is needed as AWS CodeBuild can only integrate with
GitHub from one AWS account in one region with a single GitHub
user. Technically you could use different users for each region in
a single AWS account, but for simplicity limit yourself to only
one GitHub user per AWS account (instead of one GitHub user per
AWS account per region)

	To do the one time step of integrating the entire AWS account in
that region with the GitHub service user

	Browse to CodeBuild [https://us-west-2.console.aws.amazon.com/codesuite/codebuild/]﻿ in AWS and click Create Project

	Navigate down to Source and set Source Provider to
GitHub

	For Repository select
Connect with a GitHub personal access token

	Enter the persona access token for the GitHub service user. If
you haven’t created one do so and grant it repo and
admin:repo_hook

	Click Save Token

	Abort the project setup process by clicking the
Build Projects breadcrumb at the top. This “Save Token”
step was the only thing you needed to do in that process

Grant the GitHub service user access to the GitHub repository

	As an admin of the GitHub repository go to that repositories
settings, select Collaborators and Teams, and add the GitHub
service user to the repository

	Set their access level to Admin

	Copy the invite link, login as the service user and accept the
invitation

Deploy CloudFormation stack creating CodeBuild project

Deploy the mozdef-cicd-codebuild.yml CloudFormation template
to create the CodeBuild project and IAM Role

The Build Sequence

	A branch is merged into master in the GitHub repo or a version git tag is
applied to a commit.

	GitHub emits a webhook event to AWS CodeBuild indicating this.

	AWS CodeBuild considers the Filter Groups configured to decide if the tag
or branch warrants triggering a build. These Filter Groups are defined in
the mozdef-cicd-codebuild.yml CloudFormation template. Assuming the tag
or branch are acceptable, CodeBuild continues.

	AWS CodeBuild reads the
buildspec.yml [https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/buildspec.yml]
file to know what to do.

	The install phase of the buildspec.yml fetches
packer [https://www.packer.io/] and unzips it.

	packer is a tool that spawns an ec2 instance, provisions it, and renders
an AWS Machine Image (AMI) from it.

	The build phase of the buildspec.yml runs the
cloudy_mozdef/ci/deploy [https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/deploy]
script in the AWS CodeBuild Ubuntu 14.04 environment.

	The deploy script calls the
build-from-cwd [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L78-L79]
target of the Makefile which calls docker-compose build on the
docker-compose.yml [https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose.yml]
file, building the docker images in the AWS CodeBuild environment. These are
built both so they can be consumed later in the build by packer and also
for use by developers and the community.

	deploy then calls the
docker-push-tagged [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L113]
make target which calls

	the tag-images [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L109-L110]
make target which calls the
cloudy_mozdef/ci/docker_tag_or_push tag [https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/docker_tag_or_push]
script which applies a docker image tag to the local image that was just
built by AWS CodeBuild.

	the
hub-tagged [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L116-L117]
make target which calls the
cloudy_mozdef/ci/docker_tag_or_push push [https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/docker_tag_or_push]
script which

	Uploads the local image that was just built by AWS CodeBuild to DockerHub.
If the branch being built is master then the image is uploaded both with
a tag of master as well as with a tag of latest.

	If the branch being built is from a version tag (e.g. v1.2.3) then the
image is uploaded with only that version tag applied.

	The deploy script next calls the
packer-build-github [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/cloudy_mozdef/Makefile#L34-L36]
make target in the
cloudy_mozdef/Makefile [https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/Makefile]
which calls the
ci/pack_and_copy [https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/pack_and_copy]
script which does the following steps.

	Calls packer which launches an ec2 instance, executing a bunch of steps and
and producing an AMI

	Shares the resulting AMI with the AWS Marketplace account

	Copies the resulting AMI to a list of additional AWS regions

	Copies the tags from the original AMI to these copied AMIs in other regions

	Shares the AMIs in these other regions with the AWS Marketplace account

	Creates a blob of YAML which contains the AMI IDs. This blob will be used
in the CloudFormation templates

	When ci/pack_and_copy calls packer, packer launches an ec2 instance based on
the configuration in
cloudy_mozdef/packer/packer.json [https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/packer/packer.json]

	Within this ec2 instance, packer clones the MozDef GitHub repo and checks
out the branch that triggered this build [https://github.com/mozilla/MozDef/blob/c7a166f2e29dde8e5d71853a279fb0c47a48e1b2/cloudy_mozdef/packer/packer.json#L58-L60].

	Packer replaces all instances of the word latest in the
docker-compose-cloudy-mozdef.yml [https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-cloudy-mozdef.yml]
file with either the branch master or the version tag (e.g. v1.2.3).

	Packer runs docker-compose pull on the
docker-compose-cloudy-mozdef.yml [https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-cloudy-mozdef.yml]
file to pull down both the docker images that were just built by AWS
CodeBuild and uploaded to Dockerhub as well as other non MozDef docker
images.

	After packer completes executing the steps laid out in packer.json inside
the ec2 instance, it generates an AMI from that instance and continues with
the copying, tagging and sharing steps described above.

	Now back in the AWS CodeBuild environment, the deploy script continues by
calling the
publish-versioned-templates [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/cloudy_mozdef/Makefile#L85-L87]
make target which runs the
ci/publish_versioned_templates [https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/publish_versioned_templates]
script which

	injects the AMI map yaml blob produced
earlier into the
mozdef-parent.yml [https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/cloudy_mozdef/cloudformation/mozdef-parent.yml#L86-L87]
CloudFormation template so that the template knows the AMI IDs of that
specific branch of code.

	uploads the CloudFormation templates to S3 in a directory either called
master or the tag version that was built (e.g. v1.2.3).

References

	Screenshots
	Health and Status

	Alerts

	Incident Handling

	GeoModel Version 0.1 Specification
	Terminology

	Primary Interface

	User Stories

	AWS re:invent 2018 SEC403 Presentation

Screenshots

Here are a few screen captures of key portions of the MozDef user interface.

Health and Status

MozDef includes an integrated health and status screen under the ‘about’ menu showing key performance indicators like events per second from rabbit-mq and elastic search cluster health.

You can have as many front-end processors running rabbit-mq as you like in whatever geographic distribution makes sense for your environment. The hot threads section shows you what your individual elastic search nodes are up to.

The entire display updates in real time as new information is retrieved.

[image: _images/HealthAndStatus.png]

Alerts

Alerts are simply python jobs run as celery tasks that query elastic search for either individual events, or correlate
multiple events into an alert.

The alerts screen shows the latest 100 alerts and allows interactive filtering by category, severity, time frame and free-form regex.

The display updates in real time as new alerts are received and any IP address in an alert is decorated with a menu allowing
you to query whois, dshield, CIF, etc to get context on the item. If your facilities include blocking, you can also
integrate that into the menu to allow you to block an IP directly from this screen.

[image: _images/Alerts.png]

Incident Handling

MozDef includes an integrated, real time incident handling facility that allows multiple responders to work collaboratively
on a security incident. As they add information to the incident they are able to see each others changes as they happen, in real time.

MozDef includes integration into the VERIS classification system to quickly tag incidents with metadata by dragging tags onto
the incident which allows you to aggregate metrics about your incidents.

[image: _images/IncidentHandling.png]

AWS re:invent 2018 SEC403 Presentation

	Watch our presentation on MozDef in AWS [https://www.youtube.com/watch?v=M5yQpegaYF8&feature=youtu.be&t=2471] at AWS re:Invent 2018

	Read the slides [https://www.slideshare.net/AmazonWebServices/five-new-security-automations-using-aws-security-services-open-source-sec403-aws-reinvent-2018/65]

Contributors

Here is the list of the awesome contributors helping us or that have helped us in the past:

Contributors [https://github.com/mozilla/MozDef/graphs/contributors]

Index

Actions

Actions are currently supported at the end of the alert pipeline.

Alert Action Processing

Alert actions run at the very end of the alert pipeline after the alert is already created, and are non blocking (meaning they also don’t have the ability to modify alerts inline).

class message(object):
 def __init__(self):
 '''
 triggers when a geomodel alert is generated
 '''
 self.alert_classname = 'AlertGeomodel'
 self.registration = 'geomodel'
 self.priority = 1

Alert Trigger

def onMessage(self, message):
 print(message)
 return message

Plugin Registration

Simply place the .py file in the alert actions [https://github.com/mozilla/MozDef/tree/master/alerts/actions] directory.

Mozilla Public License Version 2.0

1. Definitions

	1.1. “Contributor”

	means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.

	1.2. “Contributor Version”

	means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor’s Contribution.

	1.3. “Contribution”

	means Covered Software of a particular Contributor.

	1.4. “Covered Software”

	means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.

	1.5. “Incompatible With Secondary Licenses”

	means

	that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or

	that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.

	1.6. “Executable Form”

	means any form of the work other than Source Code Form.

	1.7. “Larger Work”

	means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.

	1.8. “License”

	means this document.

	1.9. “Licensable”

	means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.

	1.10. “Modifications”

	means any of the following:

	any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or

	any new file in Source Code Form that contains any Covered
Software.

	1.11. “Patent Claims” of a Contributor

	means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.

	1.12. “Secondary License”

	means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.

	1.13. “Source Code Form”

	means the form of the work preferred for making modifications.

	1.14. “You” (or “Your”)

	means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, “control” means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.

2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:

	under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and

	under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:

	for any code that a Contributor has removed from Covered Software;
or

	for infringements caused by: (i) Your and any other third party’s
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or

	under Patent Claims infringed by Covered Software in the absence of
its Contributions.

This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients’ rights in the Source Code
Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

	such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and

	You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients’ rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).

3.4. Notices

You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.

5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.

6. Disclaimer of Warranty

Covered Software is provided under this License on an “as is”
basis, without warranty of any kind, either expressed, implied, or
statutory, including, without limitation, warranties that the
Covered Software is free of defects, merchantable, fit for a
particular purpose or non-infringing. The entire risk as to the
quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You
(not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an
essential part of this License. No use of any Covered Software is
authorized under this License except under this disclaimer.

7. Limitation of Liability

Under no circumstances and under no legal theory, whether tort
(including negligence), contract, or otherwise, shall any
Contributor, or anyone who distributes Covered Software as
permitted above, be liable to You for any direct, indirect,
special, incidental, or consequential damages of any character
including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses, even if such party
shall have been informed of the possibility of such damages. This
limitation of liability shall not apply to liability for death or
personal injury resulting from such party’s negligence to the
extent applicable law prohibits such limitation. Some
jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and
limitation may not apply to You.

8. Litigation

Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party’s ability to bring
cross-claims or counter-claims.

9. Miscellaneous

This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.

10.3. Modified Versions

If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses

If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.

Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - “Incompatible With Secondary Licenses” Notice

This Source Code Form is “Incompatible With Secondary Licenses”, as
defined by the Mozilla Public License, v. 2.0.

Plugins

Plugins are supported in several places: Event Processing and the REST api.

Event Processing

The front-end event processing portion of MozDef supports python mq plugins [https://github.com/mozilla/MozDef/tree/master/mq/plugins] to allow customization of the input chain.
Plugins are simple python modules than can register for events with a priority, so they only see events with certain
dictionary items/values and will get them in a predefined order.

To create a plugin, make a python class that presents a registration dictionary and a priority as follows:

class message(object):
 def __init__(self):
 '''register our criteria for being passed a message
 as a list of lower case strings or values to match with an event's dictionary of keys or values
 set the priority if you have a preference for order of plugins to run.
 0 goes first, 100 is assumed/default if not sent
 '''
 self.registration = ['sourceipaddress', 'destinationipaddress']
 self.priority = 20

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, message, metadata):
 #do something interesting with the message or metadata
 return (message, metadata)

The plugin will receive a copy of the incoming event as a python dictionary in the ‘message’ variable. The plugin can do whatever it wants with this dictionary and return it to MozDef. Plugins will be called in priority order 0 to 100 if the incoming event matches their registration criteria. i.e. If you register for sourceipaddress you will only get events containing the sourceipaddress field.

If you return the message as None (i.e. message=None) the message will be dropped and not be processed any further.
If you modify the metadata the new values will be used when the message is posted to elastic search. You can use this
to assign custom document types, set static document _id values, etc.

Plugin Registration

Simply place the .py file in the plugins directory where the esworker.py is located, restart the esworker.py process
and it will recognize the plugin and pass it events as it sees them.

REST Plugins

The REST API for MozDef also supports rest plugins [https://github.com/mozilla/MozDef/tree/master/rest/plugins] which allow you to customize your handling of API calls to suit your environment.
Plugins are simple python modules than can register for REST endpoints with a priority, so they only see calls for that endpoint
and will get them in a predefined order.

To create a REST API plugin simply create a python class that presents a registration dictionary and priority as follows:

class message(object):
 def __init__(self):
 '''register our criteria for being passed a message
 as a list of lower case strings to match with an rest endpoint
 (i.e. blockip matches /blockip)
 set the priority if you have a preference for order of plugins
 0 goes first, 100 is assumed/default if not sent

 Plugins will register in Meteor with attributes:
 name: (as below)
 description: (as below)
 priority: (as below)
 file: "plugins.filename" where filename.py is the plugin code.

 Plugin gets sent main rest options as:
 self.restoptions
 self.restoptions['configfile'] will be the .conf file
 used by the restapi's index.py file.

 '''

 self.registration = ['blockip']
 self.priority = 10
 self.name = "Banhammer"
 self.description = "BGP Blackhole"

The registration is the REST endpoint for which your plugin will receive a copy of the request/response objects to use or modify.
The priority allows you to order your plugins if needed so that they operate on data in a defined pattern.
The name and description are passed to the Meteor UI for use in dialog boxes, etc so the user can make choices when needed
to include/exclude plugins. For example the /blockip endpoint allows you to register multiple methods of blocking an IP
to match your environment: firewalls, BGP tables, DNS blackholes can all be independently implemented and chosen by the user
at run time.

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, request, response):
 '''
 request: https://bottlepy.org/docs/dev/api.html#the-request-object
 response: https://bottlepy.org/docs/dev/api.html#the-response-object

 '''
 response.headers['X-PLUGIN'] = self.description

It’s a good idea to add your plugin to the response headers if it acts on a message to facilitate troubleshooting.
Other than that, you are free to perform whatever processing you need within the plugin being sure to
return the request, response object once done:

return (request, response)

Plugin Registration

Simply place the .py file in the rest/plugins directory, restart the REST API process
and it will recognize the plugin and pass it events as it sees them.

Alert Plugins

The alert pipeline also supports alert plugins [https://github.com/mozilla/MozDef/tree/master/alerts/plugins] which allow you to modify an alert’s properties while the alert is “firing” (before it is saved into Elasticsearch/sent to alert actions).

Create a sample plugin in alerts/plugins:

class message(object):
 def __init__(self):
 '''
 adds a new field 'testing'
 to the alert if sourceipaddress is 127.0.0.1
 '''

 self.registration = "sourceipaddress"
 self.priority = 1

This plugin’s onMessage function will get executed every time an alert has “sourceipaddress” as either a key or a value.

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, message):
 if 'sourceipaddress' in message && message['sourceipaddress'] == '127.0.0.1':
 message['testing'] = True
 return message

It’s worth noting that this is a blocking mechanism, so if this function is reaching out to external resources, the alert will not “fire” until it’s execution has finished. It may be preferred to use an alert action instead in cases where you don’t need to modify the alert, but want to trigger an API somewhere.

Plugin Registration

Simply place the .py file in the alerts/plugins directory, restart the alerts process
and it will recognize the plugin and pass it alerts based on registration.

Tests

Our test suite builds and runs entirely in docker, so a Docker daemon is required to be running locally. The test suite requires a local Elasticsearch and RabbitMQ service to run, but will be started automatically as containers as part of the tests make targets.

Run tests

To run our entire test suite, simply run:

make tests

If you want to only run a specific test file/directory, you can specify the TEST_CASE parameter:

make tests TEST_CASE=tests/mq/plugins/test_github_webhooks.py

Note

If you end up with a clobbered ES index, or anything like that which might end up in failing tests, you can clean the environment with make clean. Then run the tests again.

 _images/Alerts.png

